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Worm structure in the modified Swift-Hohenberg equation for electroconvection

Yuhai Tu
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~Received 31 December 1996!

An anisotropic complex Swift-Hohenberg equation is proposed to study pattern formation in electroconvec-
tion. In the subcritical regime, a localized state is found in two dimensions, which resembles the ‘‘worm’’ state
observed in recent experiment by M. Denninet al. @Phys. Rev. Lett.77, 2475 ~1996!; Science272, 388
~1996!#. In the corresponding one-dimensional model, a stationary pulse state is discovered, due to a nonadia-
batic effect, and it is shown to explain the localization of the ‘‘worm’’ state in the two-dimensional model.
Based on these results, we believe that the initial bifurcation should be subcritical where the ‘‘worm’’ state is
observed, and further experiment is suggested to test this scenario.@S1063-651X~97!50110-3#

PACS number~s!: 47.54.1r, 02.60.Cb, 47.20.Ky
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The study of localized structures in nonequilibrium sy
tem has received a great deal of attention since being
served experimentally in binary-mixture Raleigh-Be´nard
convection~RBC! @1#. Even though binary-mixture RBC is
highly dissipative system, the localized structures beh
much like solitons in integrable systems. On the theory s
Thual and Fauve@2# were the first to study the behavior of
subcritical complex Ginzburg-Landau equation and fou
that in certain parameter ranges, there are indeed loca
pulse solutions. The basic ingredients for the existence
localized structure are~i! there has to be linear bistability
which guarantees the local stability of the peak and the ta
the pulse;~ii ! nonlinear dispersion~the complex part of the
coefficients for the nonlinear terms! is needed to stabilize th
front connecting the peak and the tail of the localized so
tion. Much work has since been devoted along these line
understanding the details of the experimental results@3,4#.

Most of the experimental results in binary-mixture RB
were obtained in quasi-one-dimension, i.e., in a thin annu
@5#. Further efforts to extend these findings to a two dime
sional ~2D! system have not revealed any similar 2D loc
ized state as in one dimension~1D!, except for some time-
dependent patchy structure@6# and some long time transien
@7#. Recently, Denninet al. @8,9# studied electroconvection
in a nematic liquid crystal carefully. Depending on the ele
trical conductivity, they found that the pattern above onse
either a spatially extended spatial-temporal chaos~STC! state
or some isolated localized state, which they named
‘‘worm’’ state. The worm state is localized in the directio
perpendicular to the director of the liquid crystal, but is e
tended in the parallel direction. The worm can move in
parallel direction. The internal structure of the worm see
to consist of both orientations of the linearly unstable obliq
rolls, and the internal roll structure is moving relative to t
motion of its envelope.

In this paper, we present a theoretical study of the intri
ing localized worm pattern. Recently, there has be
progress in constructing a microscopic model whose lin
properties agree with those of the experiments@9#. However,
to understand the electroconvection quantitatively from
full nonlinear microscopic equations is still a daunting ta
Meanwhile, many of the fundamental qualitative questio
remain unanswered, such as the reason for the existen
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the worm state in the first place. For this purpose, we p
pose a phenomenological model to explain the formation
the worm state. As we show below, we have indeed found
our model a nontrivial localized state, whose structure a
dynamics resemble those of the worm state in the exp
ment. We also demonstrate that the localization of the wo
state is due to small scale physics~nonadiabatic effect!, and,
in fact, the corresponding 1D structure is a different kind
localized state. Experimental measurements are also
gested to test our theory.

The amplitude equation formalism that was used in@3#
and related works@3,4# to study the pulse pattern in binary
mixture RBC in principle describes the large scale and lo
time behavior of the envelope of the pattern. For the probl
at hand, the spatial extension of the worm state in the p
pendicular direction is comparable to the basic waveleng
therefore a more sensible model should include the sm
scale dynamics. The Swift-Hohenberg~SH! equation@10# is
a phenomenological model equation with the full symme
of the original problem, and it contains dynamics down
the small scale of the basic wavelength. Various modifi
forms of the SH equation have been used successfully
studying many different experimental systems, e.g., n
Bousinesq effects, mean flow effects@11#, Hopf bifurcation
@12,13#, and rotating convection@14#. This is the approach
we take in this paper.

To mimic the physics of the liquid crystal electroconve
tion, the modified Swift-Hohenberg equation~MSHE! has to
be anisotropic~even at the linear level!, and it has to be
complex because the initial bifurcation is a Hopf bifurcatio
Let f(xW ,t) be the complex order parameter. We can wr
the order parameter equation as

]f/]t5~e1 iv!f2s„~]x
21qx

2!21b~]x
21qx

2!~]y
21qy

2!

1~]y
21qy

2!2
…f1 ivg„~]x

21qx
2!1a~]y

21qy
2!…f

1g0ufu2f1g1ufu4f. ~1!

Here,e is the reduced Rayleigh number,v is the Hopf fre-
quency,qW 5(qx , qy)5uqW u(cosu, sinu), and the length scale
of the equation is set by lettinguqW u51, so the linearly most
unstable wavelengthl052p. Also b is an anisotropic pa-
rameter with the constraintubu<2, ands is a complex con-
R3765 © 1997 The American Physical Society
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FIG. 1. ~a! A 2D snapshot of the field Re@f(x,y)# for e520.2, a51, b50, vg50.5, s51.5, g0531 i , andg1522.751 i , showing
the localized worm structures.~b! A cross section of the 2D pattern shown in~a! at x545 ~indicated by the arrows!: Re@f(45,y)# versus y.
The structure on the left side shows the overlapping region of two counterpropagating worms, and the structure on the right side
transverse profile of an individual worm.
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stant. The first two lines on the right-hand side~RHS! of Eq.
~1! represent the linear properties of the electroconvec
system, which can be extracted from experiment or lin
microscopic theory. It is easy to see that the system is
early most unstable at ukxu5qx and ukyu5qy for
f;exp(ikxx1ikyy). The parametervg is proportional to the
group velocity anda is another anisotropic parameter~when
a51, the group velocity is along the wave-vector directi
q̂). The last line on the RHS of Eq.~1! contains the nonlinea
coupling terms with complex coefficientsg0 andg1. In gen-
eral, the nonlinear terms can also be anisotropic; we o
include the simplest terms possible here.

Since it is the goal of this paper to find the localized wo
state, we focus our attention on the subcritical case@15#
where Re(g0).0 and Re(g1),0. We can easily eliminate
the iv term in the linear part of the equation by a change
variablef5eivtf, so we will setv50 for now on. There
are five real parameters:e, a, b, u, andvg and three complex
parameters:s, g0, andg1 for this model. We have numeri
cally studied the MSHE extensively in parameter space
identified certain parameter regions where the locali
worm state is observed.

To demonstrate the existence of the worm state, we
show the behavior of Eq.~1! for a particular set of param
eters: e520.2, a51, b50, u523o, vg50.5, s51.5,
g0531 i , and g1522.751 i . The equation is simulated in
systems of size 64364, 128364, and 256364 with periodic
boundary conditions using both a second order finite diff
ence method and spectral method with discretizat
Dx5Dy50.5,1.0 and time stepDt50.001,0.01. We start the
system with random initial conditions with large enough a
plitude. The system quickly organizes itself into the wor
like state. A snapshot of the 2D pattern for Re@f(x,y)# after
the initial transient is shown in Fig. 1~a!.

In order to show the localization of the worm states in t
y direction, a cross section of the 2D pattern@Fig. 1~a!# along
the y direction atx545 is shown in Fig. 1~b!. The worm
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states travel in thex direction. According to their length, the
worm states in our simulation can be divided into two c
egories, which we call the long worm and the short wor
The length of the short worm does not change with time, a
is usually;3l0. Short worms travel in thex direction with
constant velocity proportional tovg . An example of a short
worm can be seen near the bottom of Fig. 1~a!. The long
worm’s length grows with time and eventually extends ov
the whole length of the system because of the perio
boundary condition.

We have tested the sensitivity of the worm pattern to
parameters in our model. We find that there is a finite ran
of parameters where the worms appear. For example, if
change the value ofe while keeping the rest of the param
eters unchanged, worms exist for20.10.e.20.25. When
e is too small, there is no pattern; and whene is too big, the
pattern becomes extended instead. The worm state is q
insensitive to the values ofa and b, as long asa;1 and
ubu,2. Forb52 anda51, the model becomes isotropic an
the worm structure gives way to a time-dependent pat
structure@13#. The velocityvg is important to give the worm
a group velocity. The wave-vector angleu has to be small
enoughu<35° to make the worm perfectly aligned in thex
direction. There are also finite regions in the parametersg0,
g1, s where worm states are observed.

The worm states interact strongly with each other. Wh
two short worms collide, they come out of the collision wit
out changing their characteristics. When a short worm c
lides with a long worm, the short worm sometimes disa
pears. When two long worms approach each other off cen
oblique rolls are excited in the region of their overlap un
the worms pass through each other or one of the wo
disappears. When two long worms collide head on, they s
each other and form a well defined boundary between th

For the short worm, because the spatial extent in b
directions is about the same order, the formation of the sh
worm is likely due to strong interaction between the tw
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directions. However, for the long worms, due to the exte
edness of the worm in thex direction, we are able to separa
the dependence in the two directions and therefore gain m
understanding of the mechanism for the localization in thy
direction. Indeed, Fourier analysis of the long worm alo
the x direction shows that it is a good approximation f
assuming thex dependence to be a simple plane wave:

f~x,y,t !5c~y,t !exp~ ikxx!. ~2!

If we substitute the above ansatz into the original Eq.~1!, we
obtain a 1D MSHE forc(y,t). For simplicity, we seta51
andb50:

]c/]t5~ ẽ 1 i ṽ !c2s~]y
21qy

2!2c1 ivg~]y
21qy

2!c

1g0ucu2c1g1ucu4c, ~3!

where ẽ 5e2Re(s)(qx
22kx

2)2 and ṽ5v2Im(s)(qx
2

2kx
2)21vg(qx

22kx
2). ṽ is set to 0 as in 2D.

FIG. 2. Space time plot of the field in Eq.~3!: Re@c(x,t)#1t/4
versusx for time differencedt54, showing two stationary pulses
The initial condition is random noise with large enough amplitu
the parameters are explained in the text.
-

re

We have studied the above 1D MSHE carefully. The n
merical scheme is the same as in the two-dimensional c
and we also start with a random initial condition with suf
cient amplitude. In order to compare it to the tw
dimensional case, we have set the parameterss51.5,
vg50.5,g053.01 i , andg1522.751 i to be the same as in
the 2D calculation. We can varyẽ because the value ofkx is
undetermineda priori. For qy5sin(u) with u523°, we find
a finite range ofẽ values, where localized structure is o
served20.15. ẽ .20.5. A space-time plot of Re@c(y,t)#

for ẽ 520.25 after an initial transient is shown in Fig. 2.
is clear from Fig. 2 that the final state consists of localiz
pulses. Most remarkably, the pulses are not moving, eve
the presence of the group velocity term in Eq.~3!.

We find that the pulse solution can be written as

c~y,t !5A~y!exp@ ia~y,t !#, ~4!

where the amplitudeA(y) is independent of time and is lo
calized with a width of 1.5l0. With its peak position shifted
to y50, the shape of the pulse is symmetric aroundy50:
A(y)5A(2y). The phase of the pulse depends on time l
early:

a~y,t !5a0~y!1Vt, ~5!

with V520.25. The shape of the time-independent ph
a0(y) is depicted in Fig. 3~b!. From Fig. 3~b!, we see that
the phase is symmetric aroundy50: a0(y)5a0(2y). The
phase is nearly constant near the center. Away from the c
ter, the phase is

a0~y!;2kyuyu1const, uyu.5

with ky;1.
As we pointed out earlier in our paper, the existence o

localized state in the subcritical equation with complex c
efficient is now well known@2#. However, a stationary local
ized pulse in the full equation, including the group veloc
term, is observed here. If one were able to eliminate

;

FIG. 3. ~a! The amplitude of the 1D pulse shown in Fig. 2:A(y) versusy; ~b! the stationary part of the phase of the 1D pulsea0(y)
versusy. See text for explanation.
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small scale structure and write the full equation in terms
the amplitude equation, one could use two coupled comp
Ginzburg-Landau equations characterizing oppositely m
ing wave packets. As shown in the work of Brand and D
issler @16#, the oppositely moving pulses often pass throu
each other without altering their own characteristics. Up
tuning the intercoupling between the two oppositely mov
pulses, the pulses can form a bound state that does not m
in either direction. However, the structure of the bound st
is such that the amplitudes of the two oppositely mov
pulses are strongly suppressed in their overlap region, w
is quite different from our stationary pulse state. Furth
more, in our simulation, no prebound traveling pulse w
observed, and the stationary localized state always fo
spontaneously as one whole object, which is also consis
with the experiment.

Away form the center, the two halves of the pulse seem
have opposite phase velocityvp56V/ky . However,ky is
much larger than the linearly most unstable wave num
qy . In addition, the size of the pulse, i.e., the spatial exten
the whole pulse is smaller than 2p/qy . This clearly shows
that the localized pulse observed here is indeed a diffe
structure, which can only be studied using models that
clude the small scale physics.

In summary, we have constructed a modified Sw
Hohenberg model to explain the formation of the localiz
worm state observed in electroconvection experiments. F
broad parameter range, we have found a solution of
MSHE that is localized in one direction (y direction! and
extended in the other direction (x direction!. In the y direc-
tion, the amplitude of the worm is maximum at the cen
and decays rapidly away from the center, The localization
the solution is understood by the discovery of a localiz
stationary pulse state in 1D, whose existence depends
cially on small scale physics~nonadiabatic effect!. In addi-
tion, the phase inside the worm, as shown in Fig. 3~b!, can-
not be described by the linearly most unstable mo
an
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W5(qx ,6qy). In the x direction, the long worm expand
while moving with the group velocity.

Our results may be tested experimentally and also prov
a link between experiment and quantities accessible to
microscopic theory. In particular, we find that the worm sta
occurs for subcritical parameters. This means that the o
of the ~presumably unstable! extended plane wave state
subcritical, with discontinuities in the amplitude, etc. Th
simple state, although unstable, should be accessible to
culations based on the microscopic theory. Our model sh
that the maximum amplitude of the localized structures in
worm state~a quantity much more difficult to calculate from
the full equations! also jumps discontinuously at the onse
this can be tested explicitly by experiment, and in this se
the experimental transition is predicted to be subcritical@17#.
We also find that the phase structure inside the worm is q
different from that described by the linearly unstable wa
vectors: this can also be checked by detailed experime
study of the worm structure.

In addition, our theory can be used to explain the tran
tion between the spatially extended STC state at small c
ductivity and the worm state at higher conductivity. Th
transition can be simply related to the supercritical to s
critical transition in our model where Re(g0) changes sign.
The study of this transition and the exploration of the para
eter space will be published elsewhere.

The discovery of the worm state in the MSHE proposed
this paper is an important step towards fully understand
the worm states, including questions such as the nuclea
and interaction of the worms. Evidently, further experimen
and theoretical work is needed to fully comprehend th
fascinating phenomena in electroconvection.

The author is grateful to Dr. M. C. Cross for critical rea
ing of the manuscript and also would like to acknowled
useful discussions with Dr. H. Riecke, Dr. M. Dennin, a
Dr. G. Ahlers.
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